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Abstract 

The long-wavelength scattering formalism for an elec- 
trically small bianisotropic sphere embedded in a gyro- 
electromagnetic uniaxial medium is used to obtain the 
Maxwell-Garnett estimates of the effective properties of 
a general class of discrete random composites. This work 
is of relevance to the effective electromagnetic proper- 
ties of crystals with defects and impurities and also to 
anisotropic composites. 

1. Introduction 

Microbubbles, dislocations and chemical impurities are 
commonly found in natural crystals (Garcfa-Ruiz, Lakh- 
takia & Messier, 1992). These and other defects distort 
lattices, thereby creating additional electronic energy lev- 
els in localized regions (Bube, 1974) as well as resid- 
ual stress concentrations (Chopra, 1969), which lead to 
premature performance degradation (Pan, Furman, Day- 
ton & Cross, 1986). These defects are also found in syn- 
thetic crystals (Moriya, 1991). Avoiding the formation 
of defects in artificial crystals is, therefore, a cherished 
goal of many. Neither are such structural inhomogeneities 
confined solely to crystalline matter, being found also 
in pigments, colloids and other amorphous materials of 
industrial importance (e.g. Hall, Benoit, Bordeleau & 
Rowland, 1988; Chernyi & Sharkov, 1991). 

However, having structural inhomogeneities is very 
desirable in some instances. Thus, the presence of precipi- 
tates may be expected to improve the mechanical prop- 
erties of polycrystalline matter (Tu & Rosenberg, 1982). 
Extenders are routinely used to space rutile particles in 
paints (Braun, 1988), while composite electroceramics 
are especially tailored for hydrophone and ultrasonic ap- 
plications (Ting, 1986). 

Since crystal defects are blessings as well as curses, 
but generally unavoidable except possibly with great ex- 
pense, there is great interest in the properties of anisotrop- 
ic matter impregnated with inhomogeneities (e.g. Ward, 
1988), the defects being spread only lightly. Such matter 
can be regarded as a two-phase (or even multiphase) com- 
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posite, with the defects being thought of as the 
inclusions in a host medium. Apart from some rather sim- 
ple mixing rules (Newnham, 1986), there is very 
little applied analysis available on the effective proper- 
ties of inhomogeneous crystals. In particular, polycrys- 
talline media are commonly assumed to be macroscop- 
ically isotropic (e.g. Kr6ner & Koch, 1976; Bussemer, 
Hehl, Kassam & Kaganov, 1991) for computational trac- 
tability; that tractability has to be a major issue in the field 
of composite materials becomes clear from even a casual 
reading of Milton (1990). 

In a recent paper (Lakhtakia & Weiglhofer, 1992), a 
formalism was developed for the scattering of electro- 
magnetic waves by an electrically small bianisotropic 
sphere embedded in a gyroelectromagnetically uniaxial 
medium. Bianisotropic materials are the most general 
spatially local non-diffusive Lorentz-covariant linear 
electromagnetic substances (Post, 1962; Kong, 1972). 
Gyroelectromagnetically uniaxial materials also embrace 
a wide variety of crystalline media. The availability of the 
long-wavelength scattering analysis provides an opportu- 
nity to obtain the Maxwell-Garnett estimates of a very 
general class of discrete random composites. Using these 
estimates, one may examine the effective electromagnetic 
behaviour of crystals containing a random sprinkling of 
electrically small defects, with possible applications at 
frequencies in the infrared and the subinfrared ranges. 
One may also study (artificial) tailored materials in which 
the point-polarizable inhomogeneities have been deliber- 
ately introduced. 

2. Scattering by a single sphere 

We begin by recapitulating the time-harmonic electro- 
magnetic response of a single bianisotropic sphere em- 
bedded in a gyroelectromagnetic host medium. The host 
medium is characterized by the constitutive relations 

D =g.E, B =~.H, (i) 

where the permittivity dyadic ~- and the permeability 
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dyadic ~- are specified by (Weiglhofer, 1990) 

e : ~1 ~- "Jl- (E" --  £1)CC,  m : #1 ~- -4- ( #  --  # I ) C C .  (2 )  

]- is the identity dyadic and c is a unit vector representing 
the crystallographic axis (Fedorov, 1975; Chen, 1983). A 
word about notation: dyadic notation is used throughout 
the paper; vectors appear in bold face, dyadics are bold 
and carry an overbar. 

Materials exhibiting both electrical anisotropy and 
magnetic anisotropy include liquid crystals, some nematic 
liquid crystals having the same principal axes for their 
permittivity and permeability dyadics (Boulanger & 
Hayes, 1990). Artificial materials characterized by (2) 
may also be made possible, recent progress in this direc- 
tion being in the fabrication of a form-birefringent po- 
larization splitter with a fibre-based composite medium 
(Shiraishi, Sato & Kawakami, 1991). Another possibility 
of realizing (2) may be through interleaving magnetically 
uniaxial layers with electrically uniaxial layers (Reese 
& Lakhtakia, 1991). Investigations of wave propagation 
in these materials indicate their considerable engineer- 
ing potential (Lakhtakia, Varadan & Varadan, 1991a, b). 
Finally, by setting #1 = #, we can obtain results for 
uniaxial dielectric hosts; el = e corresponds to uniaxial 
magnetic materials; while the isotropic case can be recov- 
ered by setting ¢1 = e and #1 = #. 

The sphere of radius a is to be made of the bianisotropic 
material characterized by the Tellegen equations (Kong, 
1972): 

D = g i . E + g i . H ,  B = N - ~ . H  + b i . E .  (3) 

Many important materials, including crystals, ferrites, 
magnetoelectrics, natural optically active materials and 
magnetoplasmas, are described by specialized versions of 
(3) .(Lakhtakia, 1990). 

Since the Green's dyadics for the medium of (2) are 
known (Weiglhofer, 1990), the boundary-value problem 
for the embedded sphere can be set up in an integral- 
equation formalism (Lakhtakia & Weiglhofer, 1992). If 
the sphere is electrically small with respect to the princi- 
pal wavelengths in both materials, it can be replaced by an 
electric dipole moment p and a magnetic dipole moment 
m ; thus, 

p = (47ra3/3)(-Aee'Einc 4- A-em'Hinc), 
(4) 

m = (4zra3/3)(-Kme.Einc + A-mm'Hin¢), 

where E i n c  and H inc a r e  the values of the actual elec- 
tric and magnetic fields incident on the electrically small 
sphere evaluated at the geometric centre of the sphere, 
while (Lakhtakia & Weiglhofer, 1992) 

- -  - - - - 1  

A ee = a-i • D m 1 • W e-~ 
- - - 1  - - - 1  1 

- (g~ - g ) .  D e " W  me " W m m "  W e r a ,  

- -  1 . W - - 1  
A em = (gi -- e-)" D e me 

- - - - 1  - - - - 1  - - - - 1  
- gi "Dm " W e m  • W e e  " W r n e ,  

- -  - - 1  - - - - 1  
A m e  = ( m - i  - D m • W e m  

bi D e 1 - - - - 1  1 
- -  " " W m e  " W r n m  • W e r e ,  

-Amm bi De 1 - - - 1  
• . W i n e  

• - I  - - - - I  - I  

- ( ~  - ~ ) .  D m • W e m  " W e e  " W m e ,  

D e  = r - + (2-6 + 

D-m = r -  ~-~-1. (2g + ei)"  g~-1. (2~- + ~-i), 

W'ee = (2]- + ~---1.  gi) /3,  Wem = ~---1.  g~/3, 

W m e = m  1 . g i / 3 ,  

W m m  - "  ( 2 ] - - 4 -  m - l  " m i ) / 3 ,  (5 )  

a superscript -1 indicating the inverse dyadic. We note 
here that, in view of (4), the quantities 47ra3--£ee/3 etc. 
may be interpreted as the polarizability dyadics of an elec- 
trically small bianisotropic sphere embedded in a gyro- 
electromagnetic ambient medium. 

3.  T h e  M a x w e l l - G a r n e t t  m o d e l  

The developments contained in the previous section may 
now be utilized to obtain the Maxwell-Gamett estimates 
of the effective medium. Consider therefore a discrete 
random medium in which identical bianisotropic spheres 
are randomly dispersed in a host gyroelectromagnetic uni- 
axial medium, there being N such inclusion spheres per 
unit volume. It is assumed that the long-wavelength ap- 
proximation holds and that the spheres are also identically 
oriented. In order to obtain the effective properties of this 
composite, it will be viewed as being effectively homo- 
geneous, with its constitutive equations given as 

D = g e ~ ' E + g e ~ ' H ,  B = ~ - e g ' H + b e g ' E -  (6) 

Each inclusion sphere is acted upon by all other inclu- 
sions, thereby giving rise to the concept of the local fields, 
EL and H L. With this in mind, (4) leads to the relations 
(Lakhtakia, 1990) 

P =(47ra3/3)(--Aee'EL + A-em'HL), 

m = (47ra3/3)(-Ame.EL + -Amm'H L). 
(7) 

On a macroscopic basis, these dipole moments are respon- 
sible for the polarization field P and the magnetization 
field M.  As P and M are nothing but the electric and 
magnetic dipole moments per unit volume, we simply get 

P = N p  = c (Aee 'EL  + A e m ' H L ) ,  

M = N m  = c(Ame'EL + Amm.HL) ,  
(s) 

with c = N(47ra3/3) being the volumetric proportion of 
the inclusion phase (0 < c < 1). Since P and M are due 
to the presence of the inclusions in the host medium, we 
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may write for the composite 4 .  S p e c i a l  a p p l i c a t i o n s  

4.1. Isotropic dielectric spheres in vacuum 
D = E . E + P  = g e f t ' E  + g e f r ' H ,  

(9) As a test case, let the host medium be free space, i.e. 
B - ~ - . H  + M  = ~ - e f f ' H  + b e f f ' E .  g = e0I-, N- = #oI-, while the inclusions be made of an 

isotropic dielectric material, g~ = e~eoI-, N-i = #0I-, gi = 
To find the local fields, the interaction among the in- b-i = 0; in this case, the only non-zero normalized polar- 

clusion spheres is assumed to be Lorentzian; therefore 
(Lakhtakia, 1992), 

B = E L - - ( 1 / 3 ) g  -1 . P ,  H = HL - - ( 1 / 3 ) m  --1 . M .  
(10) 

Now, from (8) and (10), we obtain 

----i ----I 1 

E L = N e e  • ( - B e m ' E  + Bra in -H) ,  
--1 - - - - 1  --1 

H L = N m m . ( B e e  . E - B m e . H  ), 
(11) 

where 

g e e  = l - - - ( C / 3 ) g  -1 " A-ee, 

g e m  = - ( c / / 3 )  ~--1 "-Aem, 

Brae = - (c /3)  m - l  " -Ame, 

g r a m  = r -  --1 • X-ram, 
- -  - - 1  - - 1  
N~e = B m m  • B-me - Bern • B~e , 

- - 1  
- -  - -1  " g e m  - - B  • B-mm. N m m =  Bee me 

(12) 

Finally, from (8), (9) and (11), the Maxwel l -Garnet t  esti- 
mates of the effective properties of  the composite medium 
are obtained as 

- -  - 1  - - - 1  
eeff = e -q- c(A em " N m m  " B  ee 

- -  - - - - 1  - - - 1  
- A e e - N e e  • Bem) ,  

c---.(A - - - 1  - - - 1  -aef~ = • Nee " B m m  
- -  - - - - 1  

- A e m . N m l r n . B m e ) ,  
. . . .  1 - - - 1  
beer = c(A mm" N mm " Bee 

- -  - - - - 1  

- Ame "Ne-~ 1" Bern), 
- -  - 1  - - - 1  

m-elF = m- + c(A me " Nee " B mm 
- -  - - - - 1  

- A m m . N m l . B m e ) .  

(13) 

Expressions (13) constitute the chief  result of  this paper. 
The effect of  varying the concentration c of  the inclusions 
may be easily studied, as may also the effect of  having dif- 
ferent inclusion types. The formulation is straightforward 
to implement  on a digital computer since dyadics, being 
second-rank Cartesian tensors, can be very easily inter- 
preted as 3 × 3 matrices and are very convenient to handle 
(Chen, 1983). As the procedure given is so general, we 
have not felt it necessary to provide numerical  results and 
are content to give the expressions for a few special cases 
in what follows. 

izability is given by A-ee = 3eo[(er - 1 ) / ( e r  + 2)] i-, so 
that 

_ e r + 2 + 2 c ( e ~  - -  1 )  1-, 
eeff = eo s~ + 2 -  c ( e r -  1) (14) 

~ e ~ = # o I ,  g e f r = b e ~ = 0 ,  

as expected (Ward, 1988). 

4.2. Anisotropic inclusions 

A case of wide applicabili ty concerns anisotropic (as 
opposed to bianisotropic) spheres, where gi - b~ = 0. 
Then, 

eeff = e  + 3 c ( g i -  e ) ' ( g i  + 2e-) - l '~-  

" [ I - - c e - X ' ( e i - - e ) ' ( e i - ~ -  2 e ) - l - e ]  -1 , (15) 

m-eft = m- + 3 c ( ~ i  -- m-)'(m-i + 2m-) - l ' ~ -  

" ~ -- c m - l " ( m i  - m ) ' ( m i  q- 2m-)-l"m-] -1 , 

while gef~ = befr = 0. 

4.3. Perfect conductors 

For perfectly conducting inclusions we need to set ~-~ = 
e-u, m-i = re-/u, a i  -- b i  = 0. If  the inclusion spheres are 
perfect electric conductors (PEC), i.e. in the limit u ~ 0, 
one obtains 

ee~ = ( 1 +  2c) / (1  - c ) g ,  

m-elf = 2 ( 1 -  c ) / (2  + c ) ~ - ,  

aeff = beff : 0; 

(16) 

whereas for perfect magnetic conductors (PMC), which 
correspond to ~ ---. oo, 

ee f f - -  2(1 - c ) / (2  + c )  g, 

m-err = (1 + 2c) / (1  - c ) m ,  

geff = beer = 0. 

(17) 

Many other cases of interest may be similarly worked 
out using the long-wavelength scattering formalism pre- 
sented. 
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Abstract  I. Introduction 

Reducible plane groups are classified into pairs of  
fr ieze-group classes; reducible space groups are 
classified into pairs of  layer and rod classes with 
respect to all possible Z decomposi t ions .  Firstly, all 
reduct ions of  t ranslat ion groups to the form of  a direct 
sum ( Z  decomposi t ion)  or of  a subdirect  sum ( Z  
reduct ion)  of  two G- invar ian t  t ranslat ion groups of  
lower d imensions  are de termined according to 
Bravais types. A practical  way to determine layer and 
rod classes with the use of  s tandard  space-group 
diagrams is described and a geometr ic  interpretat ion 
of  symmorph ic  representat ives of  these classes is 
explained.  Tables of  the distr ibution of  plane groups 
into pairs of  frieze classes and of  space groups into 
layer and  rod classes with respect to possible Z 
decomposi t ions  are given. A notat ion for layer and 
rod groups compat ible  with H e r m a n n - M a u g u i n  sym- 
bols for space groups is used; compatibi l i ty  is 
achieved on the basis of  the factorizat ion procedure.  

* On leave of absence from Institute of Physics, Czechoslovak 
Academy of Sciences, Na Slovance 2, PO Box 24, 18040 Praha 8, 
Czechoslovakia. 

This is the first part  of  a two-paper  series [paper  II: 
Fuksa  & Kopsk2~ (1993)] in which we apply  the results 
of  d imens ion- independen t  analysis of  the factoriz- 
ation of  reducible space groups by their partial  trans- 
lation subgroups  (Kopsk3~, 1989a, b) to plane groups 
and to space groups in three dimensions.  We start 
with a br ief  review of  the factorizat ion procedure  to 
make  the reader  famil iar  with symbols and terms used 
in the papers  by Kopsk2~ (1989a, b), which will be 
referred to as papers  A and B. According to the 
definition of  a reducible space group,  the plane 
groups of  oblique and rec tangular  systems and all 
space groups,  with the exception of  cubic ones, are 
reducible. The t ranslat ion subgroup  TG of  a reducible 
space group G contains 'par t ial  t ranslat ion subgroups '  
that  are maximal  in the sense that  they are equivalent  
to intersections of  Tc with the rational (or real) space 
they themselves generate  and invariant  under  the 
point  group G and hence normal  in G. 

According  to the ' factor izat ion theorem'  (paper  A, 
theorem 2), the factor  groups of  reducible space 
groups over partial  t ransla t ion subgroups  have the 
structure of  subper iodic  groups.  The whole Tc is 
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